Arrestin residues involved in the functional binding of arrestin to phosphorylated, photolyzed rhodopsin.

نویسندگان

  • Maria T Ascano
  • W Clay Smith
  • Susan K Gregurick
  • Phyllis R Robinson
چکیده

PURPOSE The purpose of our study was to determine whether arrestin residues previously predicted by computational modeling to interact with an aspartic acid substituted rhodopsin tail are actually involved in interactions with phospho-residues on the rhodopsin cytoplasmic tail. METHODS We generated arrestin mutants with altered charges at predicted positions. These mutants were then tested for the ability to inhibit rhodopsin using both direct binding assays, as well as functional assays involving transducin inhibition assays. RESULTS Our results demonstrate that the computer-predicted residues are indeed involved in both the ability of the low-affinity state of arrestin to bind to rhodopsin as well as the ability of arrestin to be induced into a higher-affinity state in a phospho-residue-dependent manner. CONCLUSIONS Our results also suggest that positions K14, K15, R29, H301, and K300 on arrestin interact with the phosphorylated carboxyl tail of rhodopsin and that this translates to the efficient activation of arrestin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling.

Visual arrestin plays a crucial role in the termination of the light response in vertebrate photoreceptors by binding selectively to light-activated, phosphorylated rhodopsin. Arrestin localizes predominantly to the inner segments and perinuclear region of dark-adapted rod photoreceptors, whereas light induces redistribution of arrestin to the rod outer segments. The mechanism by which arrestin...

متن کامل

Molecular Defects of the Disease-Causing Human Arrestin-1 C147F Mutant

Purpose The purpose of this study was to identify the molecular defect in the disease-causing human arrestin-1 C147F mutant. Methods The binding of wild-type (WT) human arrestin-1 and several mutants with substitutions in position 147 (including C147F, which causes dominant retinitis pigmentosa in humans) to phosphorylated and unphosphorylated light-activated rhodopsin was determined. Thermal...

متن کامل

Conformational changes in the phosphorylated C-terminal domain of rhodopsin during rhodopsin arrestin interactions.

Phosphorylation of activated G-protein-coupled receptors and the subsequent binding of arrestin mark major molecular events of homologous desensitization. In the visual system, interactions between arrestin and the phosphorylated rhodopsin are pivotal for proper termination of visual signals. By using high resolution proton nuclear magnetic resonance spectroscopy of the phosphorylated C terminu...

متن کامل

Arrestin-rhodopsin interaction. Multi-site binding delineated by peptide inhibition.

Visual arrestin modulates the intracellular response of retinal rod cells to light by specifically binding to the phosphorylated light-activated form of the photoreceptor rhodopsin (P-Rh*). In order to characterize the molecular interaction between rhodopsin and arrestin, we have studied the ability of synthetic peptides from the proposed cytoplasmic loops of rhodopsin to inhibit arrestin bindi...

متن کامل

Rhodopsin TM6 Can Interact with Two Separate and Distinct Sites on Arrestin: Evidence for Structural Plasticity and Multiple Docking Modes in Arrestin–Rhodopsin Binding

Various studies have implicated the concave surface of arrestin in the binding of the cytosolic surface of rhodopsin. However, specific sites of contact between the two proteins have not previously been defined in detail. Here, we report that arrestin shares part of the same binding site on rhodopsin as does the transducin Gα subunit C-terminal tail, suggesting binding of both proteins to rhodo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular vision

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2006